DATASHEET - NZMH2-4-VX63-T NZM2 PXR20 circuit breaker, 63A, 4p, Screw terminal, earth-fault protection Part no. NZMH2-4-VX63-T Catalog No. 193306 Similar to illustration | Delivery program | | | | |---|------------------------|----|---| | Product range | | | Circuit-breaker | | Protective function | | | Systems, cable, selectivity and generator protection
Earth-fault protection | | Standard/Approval | | | IEC | | Installation type | | | Fixed | | Release system | | | Electronic release | | Construction size | | | NZM2 | | Description | | | LSI overload protection and delayed and non-delayed short-circuit protective device R.m.s. value measurement and "thermal memory" USB interface for configuration and test function with Power Xpert Protection Manager software Optionally communication-capable with interface module and internal Modbus RTU module or CAM | | Number of poles | | | 4 pole | | Standard equipment | | | Screw connection | | Switching capacity | | | | | 400/415 V 50 Hz | I _{cu} | kA | 150 | | Rated current = rated uninterrupted current | | | | | Rated current = rated uninterrupted current | $I_n = I_u$ | Α | 63 | | Neutral conductor | % of phase conductor | % | 100 | | Setting range | | | | | Overload trip | | | | | 中 | I _r | Α | 25 - 63 | | Short-circuit releases | | | | | Non-delayed | $I_i = I_n x \dots$ | | 2 – 18 | | Delayed X 1 > | $I_{sd} = I_r x \dots$ | | 2 – 10 | | Setting range of earth fault release min. | Ig = Inx | | 20 | | Setting range of earth fault release max. | Ig = Inx | | 63 | ### **Technical data** General | delieral | | | |-----------------------------------|----|--| | Standards | | IEC/EN 60947 | | Protection against direct contact | | Finger and back of hand proof to VDE 0106 Part 100 | | Climatic proofing | | Damp heat, constant, to IEC 60068-2-78
Damp heat, cyclic, to IEC 60068-2-30 | | Ambient temperature | | | | Ambient temperature, storage | °C | - 40 - + 70 | | Operation | °C | -25 - +70 | | Mechanical shock resistance (10 ms half-sinusoidal shock) according to IEC 60068-2-27 | | g | 20 (half-sinusoidal shock 20 ms) | |---|------------------|------|---| | Safe isolation to EN 61140 | | | | | Between auxiliary contacts and main contacts | | V AC | 500 | | between the auxiliary contacts | | V AC | 300 | | Weight Mounting position | | kg | Vertical and 90° in all directions With XFI earth-fault release: - NZM1, N1, NZM2, N2: vertical and 90° in all directions with plug-in unit - NZM1, N1, NZM2, N2: vertical, 90° right/left with withdrawable unit: - NZM3, N3: vertical, 90° right/left - NZM4, N4: vertical with remote operator: - NZM2, N(S)2, NZM3, N(S)3, NZM4, N(S)4: vertical and 90° in all directions | | Direction of incoming supply | | | as required | | Degree of protection | | | | | Device | | | In the operating controls area: IP20 (basic degree of protection) | | Enclosures | | | With insulating surround: IP40
With door coupling rotary handle: IP66 | | Terminations | | | Tunnel terminal: IP10 Phase isolator and strip terminal: IP00 | | Other technical data (sheet catalogue) | | | Weight Temperature dependency, Derating Effective power loss | | Circuit-breakers | | | | | Rated current = rated uninterrupted current | $I_n = I_u$ | Α | 63 | | Rated surge voltage invariability | U _{imp} | | | | Main contacts | | V | 8000 | | Auxiliary contacts | | V | 6000 | | Rated operational voltage | U _e | V AC | 690 | | Overvoltage category/pollution degree | | | III/3 | | Rated insulation voltage | Ui | V | 690 | | Switching capacity | | | | | Rated short-circuit making capacity | I _{cm} | | | | 240 V | I _{cm} | kA | 330 | | 400/415 V | I _{cm} | kA | 330 | | 440 V 50/60 Hz | I _{cm} | kA | 286 | | 525 V 50/60 Hz | I _{cm} | kA | 105 | | 690 V 50/60 H | Ic | kA | 40 | | Rated short-circuit breaking capacity I_{cn} | I _{cn} | | | | Icu to IEC/EN 60947 test cycle 0-t-C0 | lcu | kA | | | 240 V 50/60 Hz | I _{cu} | kA | 150 | | 400/415 V 50/60 Hz | I _{cu} | kA | 150 | | 440 V 50/60 Hz | I _{cu} | kA | 130 | | 525 V 50/60 Hz | I _{cu} | kA | 50 | | 690 V 50/60 Hz | I _{cu} | kA | 20 | | Ics to IEC/EN 60947 test cycle O-t-CO-t-CO | Ics | kA | | | 240 V 50/60 Hz | I _{cs} | kA | 150 | | 400/415 V 50/60 Hz | I _{cs} | kA | 150 | | 440 V 50/60 Hz | I _{cs} | kA | 130 | | 525 V 50/60 Hz | I _{cs} | kA | 37.5 | | 690 V 50/60 Hz | I _{cs} | kA | 5 | | • | 0.3 | | Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit-breaker. | | | | | | | t = 0.3 s | I _{cw} | kA | 1.9 | |---|-----------------|-----------------|--------------------------------------| | t = 1 s | I _{cw} | kA | 1.9 | | | 'CW | 10.1 | | | Utilization category to IEC/EN 60947-2 | 0 " | | A | | Lifespan, mechanical(of which max. 50 % trip by shunt/undervoltage release) | Operations | | 20000 | | Lifespan, electrical | | | | | AC-1 | | | | | 400 V 50/60 Hz | Operations | | 10000 | | 415 V 50/60 Hz | Operations | | 10000 | | 690 V 50/60 Hz | Operations | | 7500 | | AC3 | | | | | 400 V 50/60 Hz | Operations | | 6500 | | 415 V 50/60 Hz | Operations | | 6500 | | 690 V 50/60 Hz | Operations | | 5000 | | Max. operating frequency | | Ops/h | 120 | | Total break time at short-circuit | | ms | < 10 | | Terminal capacity | | | | | Standard equipment | | | Screw connection | | Optional accessories | | | Box terminal | | | | | Tunnel terminal connection on rear | | Round copper conductor | | | | | Box terminal | | | | | Solid | | 2 | 1 x (10 - 16) | | Sullu | | mm ² | 2 x (6 - 16) | | Stranded | | mm ² | 1 x (25 - 185) | | | | | 2 x (25 - 70) | | Tunnel terminal | | | | | Solid | | mm^2 | 1 x 16 | | Stranded | | | | | 1-hole | | mm ² | 1 x (25 - 185) | | Bolt terminal and rear-side connection | | | | | Direct on the switch | | | | | | | 2 | 1 v /10 - 16\ | | Solid | | mm ² | 1 x (10 - 16)
2 x (6 - 16) | | Stranded | | mm ² | 1 x (25 - 185) | | | | | 2 x (25 - 70) | | Al circular conductor | | | | | Tunnel terminal | | | | | Solid | | mm^2 | 1 x 16 | | Stranded | | | | | Stranded | | mm ² | 1 x (25 - 185) | | Cu strip (number of segments x width x segment thickness) | | 111111 | | | | | | | | Box terminal | | | | | | min. | mm | 2×9×0.8 | | | max. | mm | 10 x 16 x 0.8
(2x) 8 x 15.5 x 0,8 | | Bolt terminal and rear-side connection | | | | | Flat copper strip, with holes | min. | mm | 2 x 16 x 0.8 | | Flat copper strip, with holes | max. | mm | 10 x 24 x 0.8 | | Copper busbar (width x thickness) | mm | | | | | 111111 | | | | Bolt terminal and rear-side connection | | | Mo | | Screw connection | | | M8 | | Direct on the switch | | | | | | min. | mm | 16 x 5 | | | max. | mm | 24 x 8 | | Control cables | | | | | | | mm^2 | 1 x (0.75 - 2.5)
2 x (0.75 - 1.5) | | | | | 2 A (0.10 - 1.0) | | Design verification as per IEC/EN 61439 | | | | |---|------------------|----|--| | Technical data for design verification | | | | | Rated operational current for specified heat dissipation | In | Α | 63 | | Equipment heat dissipation, current-dependent | P _{vid} | W | 3.27 | | Operating ambient temperature min. | | °C | -25 | | Operating ambient temperature max. | | °C | 70 | | IEC/EN 61439 design verification | | | | | 10.2 Strength of materials and parts | | | | | 10.2.2 Corrosion resistance | | | Meets the product standard's requirements. | | 10.2.3.1 Verification of thermal stability of enclosures | | | Meets the product standard's requirements. | | 10.2.3.2 Verification of resistance of insulating materials to normal heat | | | Meets the product standard's requirements. | | 10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects $$ | | | Meets the product standard's requirements. | | 10.2.4 Resistance to ultra-violet (UV) radiation | | | Meets the product standard's requirements. | | 10.2.5 Lifting | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.2.6 Mechanical impact | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.2.7 Inscriptions | | | Meets the product standard's requirements. | | 10.3 Degree of protection of ASSEMBLIES | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.4 Clearances and creepage distances | | | Meets the product standard's requirements. | | 10.5 Protection against electric shock | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.6 Incorporation of switching devices and components | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.7 Internal electrical circuits and connections | | | Is the panel builder's responsibility. | | 10.8 Connections for external conductors | | | Is the panel builder's responsibility. | | 10.9 Insulation properties | | | | | 10.9.2 Power-frequency electric strength | | | Is the panel builder's responsibility. | | 10.9.3 Impulse withstand voltage | | | Is the panel builder's responsibility. | | 10.9.4 Testing of enclosures made of insulating material | | | Is the panel builder's responsibility. | | 10.10 Temperature rise | | | The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices. | | 10.11 Short-circuit rating | | | Is the panel builder's responsibility. The specifications for the switch
gear must be observed. $\label{eq:constraint}$ | | 10.12 Electromagnetic compatibility | | | Is the panel builder's responsibility. The specifications for the switch
gear must be observed. $\label{eq:constraint}$ | #### **Technical data ETIM 7.0** 10.13 Mechanical function Low-voltage industrial components (EG000017) / Power circuit-breaker for trafo/generator/installation protection (EC000228) Electric engineering, automation, process control engineering / Low-voltage switch technology / Circuit breaker (LV < 1 kV) / Circuit breaker for power transformer, generator and system protection (ecl@ss10.0.1-27-37-04-09 [AJZ716013]) The device meets the requirements, provided the information in the instruction leaflet (IL) is observed. | protection (eci@ss10.0.1-2/-3/-04-09 [AJZ/16013]) | | | |---|----|--| | Rated permanent current lu | Α | 63 | | Rated voltage | V | 690 - 690 | | Rated short-circuit breaking capacity Icu at 400 V, 50 Hz | kA | 150 | | Overload release current setting | Α | 25 - 63 | | Adjustment range short-term delayed short-circuit release | А | 2 - 10 | | Adjustment range undelayed short-circuit release | Α | 2 - 18 | | Integrated earth fault protection | | No | | Type of electrical connection of main circuit | | Screw connection | | Device construction | | Built-in device fixed built-in technique | | Suitable for DIN rail (top hat rail) mounting | | No | | DIN rail (top hat rail) mounting optional | | Yes | | Number of auxiliary contacts as normally closed contact | | 0 | | Number of auxiliary contacts as normally open contact | | 0 | | Number of auxiliary contacts as change-over contact | | 0 | | With switched-off indicator | | No | | With under voltage release | | No | | Number of poles | | 4 | | | | | | Position of connection for main current circuit | Front side | |---|--------------| | Type of control element | Rocker lever | | Complete device with protection unit | Yes | | Motor drive integrated | No | | Motor drive optional | Yes | | Degree of protection (IP) | IP20 | ### **Characteristics** # **Dimensions** # **Additional product information (links)** | IL012099ZU NZM2-PXR circuit-breaker, basic device, NZM2-PXR Circuit-Breaker, basic unit | | | | |---|--|--|--| | IL012099ZU NZM2-PXR circuit-breaker, basic device, NZM2-PXR Circuit-Breaker, basic unit | https://es-assets.eaton.com/DOCUMENTATION/AWA_INSTRUCTIONS/IL012099ZU2019_03.pdf | | | | Weight | http://ecat.moeller.net/flip-cat/?edition=HPLEN&startpage=17.171 | | | | Temperature dependency, Derating | http://ecat.moeller.net/flip-cat/?edition=HPLEN&startpage=17.172 | | | | Effective power loss | http://ecat.moeller.net/flip-cat/?edition=HPLEN&startpage=17.174 | | | | additional technical information for NZM power switch | https://es-assets.eaton.com/DOCUMENTATION/PDF/nzm_technic_de_en.pdf | | |