Electricity Meters IEC/MID
Industrial and Commercial

Landis

ZMD405AT/CT, ZFD405AT/CT, ZMD410AT/CT, ZFD410AT/CT
E650 Series 4
Technical Data

Building on its tradition of industrial meters, Landis+Gyr has developed the E650 Series 4, the latest generation of ZxD400 meters. These meters feature a new hardware platform, combining modern technology with proven functions.

Date: 11.09.2017

File name: D000062002 E650 ZxD400xT Series 4 Technical Data en a.docx

Revision history

Version	Date	Comments
a	11.09.2017	Updated to Series 4 based on Series 3 document D000030106:
		Added maximum current data.
		Updated measurement accuracy.
		Added power consumption data.
		Added product safety information.
		Added extension board 421x.
		Deleted extension board 046x.
		Added input, output, extension board and additional power supply information.

Although the information contained within this document are presented in good faith and believed to be correct, Landis+Gyr (including its affiliates, agents and employees) disclaim any and all liability for any errors, inaccuracies or incompleteness relating to the product. Landis+Gyr makes no warranty, representation or guarantee regarding the performance, quality, durability or suitability of the products for any particular purpose. To the fullest extent permitted by law Landis+Gyr disclaims (1) any and all liability arising out of the use of the product, (2) any and all liability, including, but without limitation to, special, consequential and indirect damages and losses, and (3) any and all implied warranties, including, but without limitation to, fitness for purpose and merchantability.
The information contained in this document is strictly confidential and is intended for the addressee only. The unauthorised use, disclosure, copying, alteration or distribution of this document or the contents thereof is strictly prohibited and may be unlawful.
All product information are subject to change without notice.

Design

E650 is the most proven platform for industrial and commercial meters with more than 2 million meters installed in over 80 countries.

E650 is the result of a century Landis+Gyr experience in metering field combined with high quality requirements.

Range

E650 meters are the answer to a wide range of specific needs: from the reliable commercial meter to the complex measuring device with comprehensive additional functionality for sophisticated data acquisition and flexible tariff control at large industrial customers.

Application

E650 offers high flexibility to connect to different power system distributions from low up to high voltage levels thanks to various voltage and current settings.

Covering most of the energy measurement and calculation use cases, E650 meters record active and reactive energy consumption in all three-phase four-wire and three-phase three-wire networks with powerful recording capabilities.
For instance, 32 energy rate registers can be combined in many different ways through 17 measured quantities, per quadrants or per phases.
Those registers can be controlled by various sources (Control inputs, time switch or communication signals). 24 maximum demand rate registers and 2 lowest power factor registers with time stamp are available as well.
8 operating time registers settable with various control signals could be used in various situations from fraud tentatives up to operation follow up.
All registers can be stored in stored value profiles that allows the storage of 84 values for one year with a weekly reset.

One out of 2 load profiles available can be used to record energy registers, last average demand, average power factor for billing purposes in the case of dynamic tariffs, for instance, with an integration period programmable according to real needs.

E650 has various options to detect fraud attempts from energy calculation modes up to hardware options as DC - strong field detection or integrated terminal cover detection switch with time stamped records in the event logbook and optional local signalisalisation over a special LED or arrows on the LCD display.

In the Time of Use part the utility can define up to 12 different week/season tables, 100 special days and 12 day tables that are controlled by 16 time switch control signals. Programmable passive tables and emergency settings allow to manage unexpected or future situations without any additional workload.

A comprehensive logbook offers the possibility to record more than 70 different events with time stamp in a circular table of 500 events.

E650 can be used for network monitoring with key average measurement RMS recordings (U, I, P, Q, PF, THD).

Up to 26 channels can be recorded in a second load profile with a different integration period programmable from 1 minute up to 60 minutes which allows an excellent network monitoring.
Most power quality events (over-/undervoltages, power failures) are logged in the event logs with number of event, timestamp and phase allowing an easy calculation of SAIDI (System Average Interruption Duration Index) parameters. Up to 30 events for power failures can be recorded in a dedicated event log.

All information (stored data profile, load profiles, logbook, dedicated event log) are stored in nonvolatile memory, which prevents any losses of critical data information.

Through a control table, it is possible to combine various signal sources to control signals with Boolean operators.
E650 is able to achieve simple automatism without any additional components.
Such control capabilities could be used not only to control registers but outputs locally or remotely as well.

E650 have extended digitals input and outputs (static and relays) from 3 inputs/2 outputs as basis combined with a variety of option boards offering different capabilities.

Modular communication

Type AT/CT meters are equipped with modular communication units, which provide the right choice for the best data channel at all times. Plug \& Play modules also offer you full freedom of choice for deployment of new communication technologies.

Installation support

An indication of phase voltages, phase angles, rotating field and energy direction supports the installation.

Summary of the main features

ZMD400

Measured quantities	
Energy (quadrants, ph, direction, reverse stop)	$17^{1)}$
Summation channels (virtual or digital input)	$2^{1)}$
Losses (OLA, NLA)	$2^{1)}$
Losses ($\mathrm{I}^{2}, \mathrm{U}^{2}$)	2^{11}
Active energy harmonic distortion	2^{11}
Rotating field direction	-
Energy and demand registers	
Energy rates	32
Total energy	27
Demand rates	24
Power factor (combimeters only)	2
Last average and current demand	2×10
Memory depth per value (84 values selectable)	53
Other registers	
Operating time	8
Diagnostic registers	41
Tariff module	
Season tables	12
Week tables	12
Day tables	12
Special days (set 26 years ahead)	100
Time of use control signals	16
Emergency settings	-
Active/passive time tables	-
Control table-7 different control sources combinations to control 16 control signals	
Communication and digital inputs, TOU; voltage, power factor, demand, current monitoring, status, missing voltages	-
Load profiles (integration period from 1 up to 60 minutes)	
Independent load profiles	2 (1 optional)
Maximum number of captured channels	26
Data information storage (stored data profile, 2 load profiles, event log, dedicated event logs)	
Non-volatile memory (Flash memory)	-
${ }^{\text {1) }}$ Value recordable in dedicated load profile from	ical 15 minutes).

Instantaneous values		
Voltage phase-neutral or phase-ground	- ${ }^{\text {2) }}$	-
Voltage phase-phase	-	- ${ }^{2)}$ (U1-2, U2-3 only)
Current	$(11,12,13, I N)^{2)}$	$(11,13)^{2)}$
Frequency	- ${ }^{2)}$	- ${ }^{2)}$
Phase angles	- ${ }^{2)}$	-
Active power (+/-)	(P1, P2, P3, P total) ${ }^{2)}$	P total ${ }^{2)}$
Reactive power (+/-)	(Q1, Q2, Q3, Q total) ${ }^{2)}$	Q total ${ }^{2)}$
Power factor	PF1, 2, 3, (PF total) ${ }^{1)}$	PF total ${ }^{2)}$
TTHD of active power	Sum ${ }^{2)}$	Sum ${ }^{2)}$
TTHD of phase voltage	$\left(\right.$ Phase 1, 2, 3) ${ }^{\text {2) }}$	$\left(\right.$ Phase 1, 3) ${ }^{2)}$
TTHD of phase current	$\left(\right.$ Phase 1, 2, 3) ${ }^{\text {2) }}$	$\left(\right.$ Phase 1, 3) ${ }^{2}$
TTHD of voltage	Sum ${ }^{2)}$	Sum ${ }^{2)}$
TTHD of current	Sum ${ }^{2)}$	Sum ${ }^{2)}$
Measurements monitoring with thresholds and records in event log		
Over-/under-voltage phase-neutral	-	-
Over-/under-voltage phase-phase	-	-
Over-current (phase and neutral)	-	-
Event logs		
Maximum number of entries time stamped (s)	1000	
Dedicated event log with snapshot		
Maximum number of entries time stamped (s)	30	
Primary or secondary values	-	
SMS alarm capabilities		
Alarm numbers of digital inputs	1 max.	
Alarms on event (SMS)	-	

E650 Series 4 ZxD400AT/CT - Technical Data

Measurement behaviour		
Starting current ZxD405xT	$0.1 \% I_{n}$	
According to IEC	$0.07 \% I_{n}$	
Typical	as 1 A meter	
$5 \\| 1$ A		
Starting current ZxD410xT	$0.2 \% I_{n}$	
According to IEC	$0.14 \% I_{n}$	
Typical	as 1 A meter	

The start-up of the meter is controlled by the starting power and not by the starting current.

Starting power in M-circuit single-phase
Nominal voltage x starting current

Starting power in F-circuit all phases
Nominal voltage x starting current $\mathrm{x} \sqrt{ } 3$

MID-specific data
Current (for classes B and C)

Rated current I_{n}	1.0 A, 5.0 A
Minimum current $I_{\text {min }}$	0.01 A, 0.05 A
Transitional current $\mathrm{Itr}_{\text {tr }}$	$0.05 \mathrm{~A}, 0.25 \mathrm{~A}$
Maximum current $\mathrm{I}_{\text {max }}$	2.0 A, 10.0 A
Measurement accuracy	to EN 50470-3
ZxD400xT	classes B and C
Measurement behaviour	
Starting current $\mathrm{I}_{\text {st }}$	
Class B: $\mathrm{I}_{\text {st }}$	0.002 A, 0.01 A
Class C: I_{st}	0.001 A, 0.005 A

General

Operating behaviour

Voltage failure (power-down)

Bridging time	0.5 s
Data storage	after another 0.2 s
Switch off	after approx. 2.5 s

Voltage restoration (power-up)
Function standby 3 phases
after 2 s
Function standby 1 phase after 5 s
Detection of energy direction and phase voltage after 2 to 3 s

Power consumption

Power consumption per phase in voltage circuit Without communication unit, without auxiliary supply

$3 \times 58 / 100$ to $69 / 120 \mathrm{~V}$	0.4 W 0.7 VA
$3 \times 110 / 190$ to $133 / 230 \mathrm{~V}$	0.5 W 1.0 VA
$3 \times 220 / 380$ to $240 / 415 \mathrm{~V}$	0.7 W 1.7 VA
$3 \times 58 / 100$ to $240 / 415 \mathrm{~V}$	0.7 W 1.7 VA

Total power consumption in voltage circuit
Without communication unit, without auxiliary supply

3×100 to 120 V	1.0 W 2.1 VA
3×220 to 240 V	1.2 W 3.0 VA
3×100 to 415 V	1.9 W 5.4 VA

Power consumption per phase in voltage circuit With communication unit, without auxiliary supply $3 \times 58 / 100$ to $69 / 120 \mathrm{~V}$ 1.8 W 2.7 VA
$3 \times 110 / 190$ to $133 / 230 \mathrm{~V}$ 1.8 W 3.5 VA
$3 \times 220 / 380$ to $240 / 415 \mathrm{~V}$ 1.9 W 4.1 VA
$3 \times 58 / 100$ to $240 / 415 \mathrm{~V}$
1.9 W 4.1 VA

Total power consumption in voltage circuit
With communication unit, without auxiliary supply
3×100 to 120 V
5.4 W 5.4 VA
3×220 to 240 V
5.4 W 10.5 VA
3×100 to 415 V
5.8 W 12.3 VA

Power consumption per phase in current circuit
Phase current 1 A 5 A 10 A
Active power (typical) $5 \mathrm{~mW} \quad 0.125 \mathrm{~W} \quad 0.5 \mathrm{~W}$
Apparent power (typical) $5 \mathrm{mVA} \quad 0.125 \mathrm{VA} 0.5 \mathrm{VA}$
Environmental influences

Temperature range	to IEC 62052-11
Metrological	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage	$-40{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$
Temperature coefficient	
Range Average value (typical) at $\cos \varphi=1$ (from $0.05 \mathrm{I}_{\mathrm{b}}$ to $\mathrm{I}_{\text {max }}$) at $\cos \varphi=0.5\left(\right.$ from $0.1 I_{b}$ to $\left.I_{\max }\right)$	$\begin{array}{r} -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \pm 0.012 \% \text { per } \mathrm{K} \\ \pm 0.02 \% \text { per } \mathrm{K} \\ \pm 0.03 \% \text { per } \mathrm{K} \end{array}$
Ingress protection to IEC 60529	IP51
Electromagnetic compatibility	
Electrostatic discharges	to IEC 61000-4-2
Air discharge	15 kV
Contact discharge	8 kV
Electromagnetic RF fields	to IEC 61000-4-3
80 MHz to 2 GHz	10 and $30 \mathrm{~V} / \mathrm{m}$

Radio interference suppression according to IEC/CISPR 22	class B
Fast transient burst test	IEC 61000-4-4
Current and voltage circuits	4 kV
Auxiliary circuits > 40 V	2 kV
Surge test	IEC 61000-4-5
Current and voltage circuits	4 kV
Auxiliary circuits > 40 V	1 kV
Immunity to conducted disturbances IEC 61000-4-6	
150 kHz to 80 MHz	10 V
Immunity to conducted disturbances according to CENELEC TR 50579	
	2 to 150 kHz
Insulation strength	
Insulation strength 4 kV at 50 Hz during 1 min .	
Impulse voltage 1.2/50 s s to	to IEC 62052-11
Current and voltage circuits	8 kV
Auxiliary circuits	6 kV
Protection class II to IEC 62052-11	$1 \square$

Product safety

Normal environmental conditions IEC 62052-31
Overvoltage category III
Pollution degree 2
Max. operating altitude 2000 m

Calendar clock

Calendar type Gregorian or Persian (Jalaali)

Accuracy	$<5 \mathrm{ppm}$
Backup time (power reserve) meter	
With supercapacitor	>20 days
Charging time for max. backup time	300 h
With battery (optional)	10 years
Battery type	$\mathrm{CR}-\mathrm{P} 2$
Battery temperature range	$-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

Display

Characteristics
Type
LCD (liquid crystal display)
Digit size in value field $\quad 8 \mathrm{~mm}$
Number of digits in value field up to 8
Digit size in index field 6 mm
Number of digits in index field up to 8

Inputs (passive)

HLV, reinforced insulation by optocoupler	
Number on base meter	
Number on extension board 420 x	4
Number on extension board 240 x	4
Control voltage US	2
Range	100 to $240 \mathrm{~V}_{\mathrm{AC}}$
Input current	80 to 115%
l	

SELV, reinforced insulation by optocoupler
Number on extension board 326x
3
Control voltage U_{S}
12 to $24 \mathrm{~V}_{\mathrm{DC}}$
Range
80 to 115%
Input current
$<1.5 \mathrm{~mA}$ at 24 V DC

Inputs (active)

SELV, reinforced insulation by optocoupler
Active inputs, external closing contact required for activation (no control voltage necessary)
Number on extension board 421x 4
Open circuit voltage (contact open) <5 V
Short-circuit current (contact closed) $<5 \mathrm{~mA}$
Max. contact resistance <500 Ohm

Outputs (solid-state relay)

HLV or SELV, reinforced insulation by solid-state relay
Voltage
12 to 240 VAC/DC
Max. current for each output 100 mA RMS
Max. switching frequency (pulse length 20 ms)
25 Hz
Contact resistance (typical)
13-18 Ohm
Base meter
Number
2
Max. current all outputs together
Derating above $45^{\circ} \mathrm{C}$ ambient
200 mA RMs

Extension board 420 x	
Number	2
Max. current all outputs together	200 mA RMS
Derating above $45^{\circ} \mathrm{C}$ ambient	$0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
Extension board 240 x	
Number	4
Max. current all outputs together	200 mA RMS
Derating above $45^{\circ} \mathrm{C}$ ambient	$0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
Extension board 060 O	
Number	
Max. current all outputs together	200 mA RMS
Derating above $45^{\circ} \mathrm{C}$ ambient	$0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$

Extension board 045 x	4
Number	4
Max. current all outputs together	200 mA RMs
Derating above $45^{\circ} \mathrm{C}$ ambient	$0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$

Extension board 047x

Number	4
Max. current all outputs together	200 mA RMS
Derating above $45^{\circ} \mathrm{C}$ ambient	$0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$

Mechanical relay

HLV, reinforced insulation, intended to control auxiliary devices
Number on extension board 326x 2
Number on extension board 421x 2
Max. voltage $250 \mathrm{~V}_{\mathrm{AC}}$
Max. current for each relay 8 A
Max. current all relays together 8 A
Max. operations with $\cos \varphi \sim 100000$
Contact resistance (typical) 10 mOhm
Withstand across open contact $1000 \mathrm{~V}_{\mathrm{AC}}$
Withstand between contacts $1500 \mathrm{~V}_{\mathrm{AC}}$
Outputs (optical)
Optical test outputs active and reactive energy
Type red LED

Number 2
Meter constant selectable

Communication interface

Optical interfacer serial, asynchronous, half-duplex
Type $\quad 9600$ bps
Max. transmission rate
Protocols

Communication units
Exchangeable communication units for various
applications.

Additional power supply (optional)
On extension board 045x
HLV, reinforced insulation
Nominal voltage range $\quad 100$ to $240 \mathrm{~V}_{\mathrm{AC} / \mathrm{DC}}$
Tolerance 80 to $115 \% U_{n}$
Frequency $\quad 50$ or 60 Hz

VIN = 80 V	
Max. power consumption ${ }^{1)}$	$5.6 \mathrm{~W} / 8.4 \mathrm{VA}$
Max. current	105 mA
VIN = 276 V	
Max. power consumption ${ }^{1)}$	$5.6 \mathrm{~W} / 12.4 \mathrm{VA}$
Max. current	45 mA

On extension board 047x	
SELV, reinforced insulation	
Nominal voltage range	12 to $48 \mathrm{~V}_{\mathrm{DC}}$
Tolerance	80 to $115 \% \mathrm{U}_{\mathrm{n}}$
Max. power consumption ${ }^{1)}$	5.2 W
Max. current ($\left.\mathrm{V}_{\mathbb{I}}=9.6 \mathrm{~V}\right)$	530 mA
On extension board 326x	
SELV, reinforced insulation	
Nominal voltage range	12 to $24 \mathrm{~V}_{\mathrm{DC}}$
Tolerance	80 to $115 \% U_{n}$
Max. power consumption ${ }^{1)}$	5.2 W
Max. current ($\mathrm{V}_{\mathbb{I N}}=9.6 \mathrm{~V}$)	530 mA
${ }^{1)}$ Power consumption without mains supply. If auxiliary and mains supply are available, the consumption is shared arbitrarily.	
Weight and dimensions	
Weight	approx. 1.5 kg
External dimensions	
Width	177 mm
Height (with short terminal cover)	r) $\quad 244 \mathrm{~mm}$
Height (with standard terminal cover)	cover) 281.5 mm
Height (with extended hook)	305.5 mm
Depth	75 mm
Suspension triangle	
Height (with extended hook)	230 mm
Height (suspension eyelet open)) 206 mm
Height (suspension eyelet covered)	red) 190 mm
Width	150 mm
Terminal cover	
Short	no free space
Standard (opaque, transparent) 40 mm	40 mm free space
Long (opaque, transparent) 60 mm	60 mm free space
GSM 60 mm	60 mm free space
ZxB type 80 mm 硅	80 mm free space
ZxB type 110 mm (110 mm	110 mm free space
ADP2 adapter	

Housing material

Polycarbonate, partly glass-fibre reinforced

Environmental protection

RoHS compliant design

Connections

Phase connections
Type screw type terminals
Diameter $\quad 5.2 \mathrm{~mm}$

Recommended conductor cross-section
1.5 to $6 \mathrm{~mm}^{2}$

Screw head
Screw dimensions
Pozidrive Combi No. 2
M4 x 8
Screw head diameter $\leq 5.8 \mathrm{~mm}$
Tightening torque (min...max) 1.0...1.7 Nm

Other connections
Type screwless spring-type terminal
Max. current of voltage outputs
1 A

Meter dimensions (standard terminal cover)

Terminal dimensions

Terminal layout according to DIN

Symmetrical terminal layout (optional, ZMD400 only)

Type designation
Network type

ZFD
ZMD
:---
3-phase 4-wire network (M-circuit)

Connection type

4 Transformer operated

Accuracy class

10 Active energy class 1 (IEC), B (MID)
05 Active energy class 0.5 S (IEC), C (MID)

Measured quantities

C Active and reactive energy
A Active energy

Construction

T With exchangeable communication units

Tariffication

21 Energy rates, external rate control via control inputs
24 Energy rates, internal rate control via time switch
(additionally possible via control inputs)
41 Energy and demand rates, external rate control via control inputs
44 Energy and demand rates, internal rate control via time switch
(additionally possible via control inputs)
All versions with 3 control inputs and 2 output contacts

Additional functions

000x No extension board
060x 6 outputs
240x 2 control inputs, 4 outputs
420x 4 control inputs, 2 outputs
421x $\quad 4$ active inputs, 2 relay outputs 8A
$326 x \quad 3$ control inputs, 2 relay outputs, auxiliary power supply 12 to $24 V_{D C}$
045x 4 outputs, auxiliary power supply 100 to $240 \mathrm{~V}_{\mathrm{AC}} / \mathrm{V}_{\mathrm{DC}}$
047x 4 outputs, auxiliary power supply 12 to $48 \mathrm{~V}_{\mathrm{DC}}$
xxx0 No additional functions
xxx2 DC magnet detection
xxx7 Load profile
xxx9 DC magnet detection and load profile (integrated terminal cover switch option only available in this configuration)

Series 4

Contact:

Landis+Gyr AG
Theilerstrasse 1

Landis

 GyrImanage energy better

